Abstract
Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions ($3^\prime$ UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis. After analysing plenty of previously reported RNA editing events and human normal tissues RNA high-seq data, >60000 potentially effective RNA editing events on functional genes were found. The RNA Editing Plus platform is available for free at https://www.rnaeditplus.org/, and we believe our platform governing multiple optimized methods will improve further studies of A-to-I-induced editing post-transcriptional regulation.